Efficient two-dimensional simulations of the fractional Szabo equation with different time-stepping schemes
نویسندگان
چکیده
The modified Szabo wave equation is one of the various models that have been developed to model the power law frequency-dependent attenuation phenomena in lossy media. The purpose of this study is to develop two different efficient numerical methods for the two-dimensional Szabo equation and to compare the relative merits of each method. In both methods we employ the ADI scheme to split directions, however, we use different time discretization. Specifically, in the first ADI method (ADI-I) we include a third-order correction term to achieve second-order convergence for smooth solutions, hence extending the work of Sun and Wu (2006). In the second ADI method (ADI-II), we employ the scheme in Zeng et al. (submitted for publication) to two dimensional fractional wave equation using multiple correction terms to enhance accuracy for non-smooth solutions. Our simulation results show that both methods are computationally efficient for the fractionalwave equation but have different advantages in terms of accuracy. Specifically, ADI-II seems to producemore accurate results than ADI-I for non-smooth solutions. However, for smooth solutions and fractional order close to two, ADI-I seems to outperform ADI-II. © 2016 Elsevier Ltd. All rights reserved.
منابع مشابه
Implicit RBF Meshless Method for the Solution of Two-dimensional Variable Order Fractional Cable Equation
In the present work, the numerical solution of two-dimensional variable-order fractional cable (VOFC) equation using meshless collocation methods with thin plate spline radial basis functions is considered. In the proposed methods, we first use two schemes of order O(τ2) for the time derivatives and then meshless approach is applied to the space component. Numerical results obtained ...
متن کاملBarrier options pricing of fractional version of the Black-Scholes model
In this paper two different methods are presented to approximate the solution of the fractional Black-Scholes equation for valuation of barrier option. Also, the two schemes need less computational work in comparison with the traditional methods. In this work, we propose a new generalization of the two-dimensional differential transform method and decomposition method that will extend the appli...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملNonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis
The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Mathematics with Applications
دوره 73 شماره
صفحات -
تاریخ انتشار 2017